
放射測定に関する諸量

量の名称	記号、式	定義
	単位	
放射エネルギー	Q=Φt (J)	エネルギーの発生源から自由空間に移動するエ
radiant energy		ネルギーの量を示します。
放射束 	$\Phi = dQ/dt (W)$	一定時間中にエネルギーの発生源から自由空間 に移動するエネルギーの量を示します。
radiant flux		単位時間(t)あたりの放射エネルギー。
放射発散度	M=dΦ/dS	平面状の放射源から半球空間(2π)に放射された
radiant emittance	(W ⋅ m ⁻²)	放射源の単位面積(S)あたりの放射束を示しま
	$M=\pi L$	す。
放射強度	$I = d\Phi/d\Omega$	エネルギーの発生源からある方向に放射された
radiant intensity	$(W \cdot sr^{-1})$	単位立体角 (Ω) あたりのエネルギーを示します。
放射輝度	L=dI/(dS $\cdot \cos \theta$)	単位立体角(Ω)あたり、単位投影面積(A)あたり
radiance	$(\mathbf{W} \cdot \mathbf{sr}^{-1} \cdot \mathbf{m}^{-2})$	の放射束を示します。
放射照度	E=dΦ/dA	放射源から平面状の物体に照射された単位面積
irradiance	(W • m ⁻²)	(A) あたりの放射束 (Φ) の量を示します。
分光放射エネルギー	$Q_{\lambda} = dQ/d\lambda$	波長λでの単位波長幅あたりの放射エネルギー
spectral radiant energy	$(J \cdot m^{-1})$	(Q)を示します。
分光放射束	$\Phi_{\lambda} = d\Phi/d\lambda$	波長λでの単位波長幅あたりの放射束(Φ)を示
spectral radiant flux	$(W \cdot m^{-1})$	します。
分光放射発散度	$M_{\lambda} = dM/d\lambda$	波長 λ での単位波長幅あたりの放射発散度(M)
spectral radiant emittance	(W ⋅ m ⁻³)	を示します。
分光放射強度	$I_{\lambda} = dI/d\lambda$	波長 λ での単位波長幅あたりの放射強度(I)を示
spectral radiant intensity	$(\mathbf{W} \cdot \mathbf{sr}^{-1} \cdot \mathbf{m}^{-1})$	します。
分光放射輝度	$L_{\lambda} = dL/d\lambda$	波長 λ での単位波長幅あたりの放射輝度(L)を示
spectral radiance	$(\mathbf{W} \cdot \mathbf{sr}^{-1} \cdot \mathbf{m}^{-3})$	します。
分光放射照度	$E_{\lambda} = dE/d\lambda$	波長λでの単位波長幅あたりの放射照度(E)を
spectral irradiance	(W ⋅ m ⁻³)	示します。